Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2
نویسندگان
چکیده
The average pH of surface oceans has decreased by 0.1 unit since industrialization and is expected to decrease by another 0.3-0.7 units before the year 2300 due to the absorption of anthropogenic CO2. This human-caused pH change is posing serious threats and challenges to the Pacific oyster (Crassostrea gigas), especially to their larval stages. Our knowledge of the effect of reduced pH on C. gigas larvae presently relies presumptively on four short-term (<4 days) survival and growth studies. Using multiple physiological measurements and life stages, the effects of long-term (40 days) exposure to pH 8.1, 7.7 and 7.4 on larval shell growth, metamorphosis, respiration and filtration rates at the time of metamorphosis, along with the juvenile shell growth and structure of the C. gigas, were examined in this study. The mean survival and growth rates were not affected by pH. The metabolic, feeding and metamorphosis rates of pediveliger larvae were similar, between pH 8.1 and 7.7. The pediveligers at pH 7.4 showed reduced weight-specific metabolic and filtration rates, yet were able to sustain a more rapid post-settlement growth rate. However, no evidence suggested that low pH treatments resulted in alterations to the shell ultrastructures (SEM images) or elemental compositions (i.e., Mg/Ca and Sr/Ca ratios). Thus, larval and post-larval forms of the C. gigas in the Yellow Sea are probably resistant to elevated CO2 and decreased near-future pH scenarios. The pre-adapted ability to resist a wide range of decreased pH may provide C. gigas with the necessary tolerance to withstand rapid pH changes over the coming century.
منابع مشابه
The estimation of Dynamic Energy Budget (DEB) parameters for Crassostrea gigas larvae Rico-Villa, Benjamin and Pouvreau, Stéphane Département de Physiologie Fonctionnelle des Organismes Marins, Station IFREMER
The major commercial marine bivalve in French aquaculture is the Pacific oyster, Crassostrea gigas. Traditionally, bivalve culture relies on juvenile collection from the natural environment but due to the high year-to-year variation in spatfall recruitment the spat production in hatcheries is increasing recently. In this context, a better understanding of the biology of C. gigas larvae is requi...
متن کاملSurvival Rates with Time Course of Frozen-thawed Pacific Oyster Larvae in Indoor Rearing System
Post-thawed larval rearing in Pacific oyster Crassostrea gigas was performed to investigate the survival rate with time course in three kinds of larvae cryopreserved. The highest survival rate and larval activity index (LAI) of post-thawed larvae were obtained from the permeation in 0.2 M sucrose and 2.0 M ethylene glycol (EG) at -1°C/min in freezing speed showing the survival rates just after ...
متن کاملHerpesviruses associated with mortalities among Pacific oyster, Crassostrea gigas, in France-Comparative study
Sporadic mortalities were reported in june and july of 1992 and 1993 among batches of hatchery-reared larval Pacifie oys ter, Crassastrea gigas, and at the beginning of July and in August of 1993 among five batches of 3-7 month old young spats, C. gigas. Observations with transmission electron microscope sho wed the presence of herpes-like virus particles in infected larvae and young spats. T...
متن کاملEffects of acute exposures to mecoprop, mecoprop-p and their biodegradation product (2-MCP) on the larval stages of the Pacific oyster, Crassostrea gigas.
Studies have shown that pesticides are sometimes detected at rather high levels in seawater and it has been suggested that these chemical compounds could act as additional stress factor for oysters cultured in coastal environments. The effects of pesticides on marine molluscs could be particularly harmful in the early stages which correspond to critical life stages. This study aimed to assess t...
متن کاملThe extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae.
Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the struct...
متن کامل